Efficiently Decodable Low-Rate Codes Meeting Gilbert-Varshamov Bound

نویسندگان

  • VENKATESAN GURUSWAMI
  • PIOTR INDYK
چکیده

We demonstrate a probabilistic construction of binary linear codes meeting the GilbertVarshamov bound (with overwhelming probability) for rates up to about 10−4, together with polynomial time algorithms to perform encoding and decoding up to half the distance. This is the first such result (for some positive rate) with polynomial decoding complexity; previously a similar result (up to rate about 0.02) was known with sub-exponential time decoding (Zyablov and Pinsker, 1981).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the List Decodability of Self-orthogonal Rank Metric Codes

V. Guruswami and N. Resch prove that the list decodability of Fq-linear rank metric codes is as good as that of random rank metric codes in [17]. Due to the potential applications of self-orthogonal rank metric codes, we focus on list decoding of them. In this paper, we prove that with high probability, an Fq-linear self-orthogonal rank metric code over Fn×m q of rate R = (1 − τ)(1 − n mτ) − is...

متن کامل

Local List Recovery of High-Rate Tensor Codes & Applications

In this work, we give the first construction of high-rate locally list-recoverable codes. Listrecovery has been an extremely useful building block in coding theory, and our motivation is to use these codes as such a building block. In particular, our construction gives the first capacity-achieving locally list-decodable codes (over constant-sized alphabet); the first capacity achieving globally...

متن کامل

On Low-Complexity Decodable Universally Good Linear Codes

Here we discuss the universal block decoding problem for memoryless systems and focus on figures of merit and linear code constructions that facilitate the analysis and construction of low-complexity decoding algorithms. We discuss the properties of ‘universally good codes’ and how such codes lie on the Gilbert-Varshamov bound. We next speak to analogues of the minimum-distance criterion and de...

متن کامل

On Gilbert-Varshamov type bounds for Z2k linear codes

In this paper we derive a Gilbert-Varshamov type bound for linear codes over Galois rings GR(pl; j): However, this bound does not guarantee existence of better linear codes over GR(pl; j) than the usual Gilbert-Varshamov bound for linear codes over the residue class field GR(pj): Next we derive a Gilbert-Varshamov type bound for Z4 linear codes which guarantees the existence of Z4 linear codes ...

متن کامل

Strengthening the Gilbert–Varshamov bound

The paper discusses some ways to strengthen (nonasymptotically) the Gilbert–Varshamov bound for linear codes. The unifying idea is to study a certain graph constructed on vectors of low weight in the cosets of the code, which we call the Varshamov graph. Various simple estimates of the number of its connected components account for better lower bounds on the minimum distance of codes, some of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004